O que é modelagem orgânica no BIM?

Modelagem Orgânica no BIM

A Modelagem da Informação da Construção (BIM) transformou a indústria da arquitetura, engenharia e construção (AEC) ao propiciar um processo mais colaborativo, eficiente e preciso. Tradicionalmente, o BIM tem sido associado a formas geométricas regulares e estruturas convencionais. No entanto, a incorporação da modelagem orgânica no BIM está abrindo novas fronteiras, permitindo a criação de formas complexas e inovadoras que refletem melhor a natureza e a criatividade humana.

O que é Modelagem Orgânica?

A modelagem orgânica refere-se ao processo de criação de formas e estruturas que imitam a natureza, caracterizadas por curvas suaves, superfícies complexas e geometria não-linear. Essas formas podem ser vistas em plantas, animais e outros elementos naturais, e sua aplicação na arquitetura e construção pode resultar em edifícios mais esteticamente agradáveis e funcionalmente eficientes.

fonte folhavitoria

Benefícios da Modelagem Orgânica no BIM

  1. Estética Inovadora: A modelagem orgânica permite a criação de edifícios com formas fluídas e dinâmicas que se destacam visualmente, Isso pode ser considerado vantajoso em projetos que buscam impacto visual marcante ou que desejam se integrar harmoniosamente ao ambiente natural.
  1. Eficiência Funcional: Formas orgânicas podem melhorar a eficiência funcional de um edifício. Por exemplo, superfícies curvas podem otimizar a aerodinâmica, reduzir o consumo de energia e melhorar a acústica interna.
  1. Sustentabilidade: Projetos inspirados na natureza muitas vezes incorporam princípios de design sustentável. A modelagem orgânica pode ser usada para criar edifícios que utilizam recursos de maneira mais eficiente, utilizam melhor a luz natural e promovem ventilação natural.
  1. Flexibilidade no Design: O BIM permite uma maior flexibilidade no design e na coordenação entre diferentes disciplinas. Isso é especialmente útil na modelagem orgânica, onde a complexidade das formas requer uma colaboração estreita entre arquitetos, engenheiros e construtores.
fonte: Alexander Justi

Ferramentas de BIM para Modelagem Orgânica

Várias ferramentas de software BIm suportam a modelagem orgânica, incluindo:

  • Autodesk Revit: Com plugins e complementos com o Dynamo, o Revit pode ser usado para criar formas complexas orgânicas e complexas. O Dynamo permite a programação visual para criar geometrias personalizadas e parametrizadas.
  • Archicad: Uma ferramenta robusta de BIM que permite criar projetos complexos com modelagem paramétrica. Suas capacidades permitem a criação de formas orgânicas detalhadas e integração com várias ferramentas de design, facilitando a colaboração no processo de design arquitetônico.
  • Rhino e Grasshopper: O Rhino é amplamente utilizado para modelagem de formas complexas e, quando combinado com o Grasshopper, permite uma modelagem paramétrica avançada que pode ser integrada ao BIM.
  • Autodesk Maya: Embora seja mais conhecido por conta das suas aplicações em animação e design de jogos, o Maya pode ser usado para criar formas orgânicas detalhadas que podem ser importadas para plataformas BIM.
fonte: SPBIM

 

Desafios e Considerações

A modelagem orgânica no BIM apresenta alguns desafios, incluindo:

  • Complexidade Computacional: Formas orgânicas complexas podem ser computacionalmente intensivas, necessitando de um hardware robusto e tempo de processamento significativo.

  • Coordenação Multidisciplinar: A integração de formas orgânicas requer uma coordenação cuidadosa entre diferentes disciplinas para garantir que todos os aspectos do design sejam executados corretamente.

  • Curva de Aprendizado: Ferramentas de modelagem orgânica podem ter uma curva de aprendizado íngreme, exigindo treinamento e experiência para serem utilizadas eficazmente.

Exemplos de Aplicação

Alguns exemplos notáveis de modelagem orgânica no BIM incluem:

  • Museu Guggenheim Bilbao: Projetado por Frank Genry, este edifício icônico utiliza formas curvas e superfícies onduladas para criar uma estrutura visualmente impressionante e funcionalmente eficiente.
fonte casacor
  • Heydar Aliyev Center: Projetado por Zaha Hadid, este centro cultural em Baku, Azerbaijão, apresenta uma forma fluida e contínua que exemplifica o potencial da modelagem orgânica no design arquitetônico.
fonte Archdaily

Conclusão

A modelagem orgânica no BIM está revolucionando a maneira como estabelecemos e construímos edifícios. Ao permitir a criação de formas mais naturais e complexas, ela abre novas possibilidades para a inovação estética e funcional na arquitetura e construção. À medida que as ferramentas e tecnologias continuam a evoluir, a modelagem orgânica no BIM promete desempenhar um papel cada vez mais importante na criação dos ambientes construídos do futuro.

10 Principais especializações que todo arquiteto e engenheiro deveria fazer

10 Principais especializações que todo arquiteto e engenheiro deveria fazer

10 Principais especializações que todo arquiteto e engenheiro deveria fazer

Na indústria da arquitetura e engenharia, a busca por conhecimento especializado é fundamental para se destacar em um mercado cada vez mais competitivo e diversificado. A evolução constante das tecnologias e a demanda por soluções inovadoras têm impulsionado a necessidade de aprimoramento profissional. Neste artigo, exploraremos as 10 Principais especializações que todo arquiteto e engenheiro deveria fazer para aprimorar suas habilidades e ampliar suas oportunidades de carreira.

 

1. BIM (Modelagem de Informação da Construção)

A Modelagem de Informação da Construção, ou BIM, revolucionou a maneira como projetos arquitetônicos e de engenharia são concebidos, construídos e gerenciados. Dominar o BIM envolve o uso de software especializado para criar modelos digitais 3D que integram informações detalhadas sobre todos os aspectos do projeto, desde geometria até custos e cronogramas. Uma especialização em BIM capacita os profissionais a colaborar de forma mais eficiente, reduzir erros e otimizar o ciclo de vida do projeto.

 BIM (Modelagem de Informação da Construção)
FONTE: SPBIM

 

Cursos específicos para BIM são essenciais para aqueles que desejam se especializar nessa área em constante evolução. Alguns dos cursos mais buscados no setor da arquitetura e engenharia relacionados ao BIM incluem:

 

Pós-Graduação em BIM: Oferecendo uma abordagem mais aprofundada sobre os princípios e aplicações do BIM, uma pós-graduação nessa área pode abordar tópicos como modelagem avançada, colaboração multidisciplinar e gestão de projetos BIM.

 

Mestrado em BIM: Um mestrado em BIM pode proporcionar uma compreensão mais completa das teorias e práticas por trás da Modelagem de Informação da Construção. Isso pode incluir pesquisas avançadas, desenvolvimento de ferramentas BIM e aplicações inovadoras de tecnologias relacionadas.

 

MBA em Gestão de Projetos BIM: Para profissionais que desejam combinar seus conhecimentos técnicos em BIM com habilidades de gerenciamento de projetos, um MBA em Gestão de Projetos BIM oferece uma visão holística de como aplicar efetivamente o BIM em um contexto de negócios.

 

Curso de Especialização em BIM Manager: Este curso visa capacitar profissionais para assumirem papéis de liderança na implementação e coordenação de projetos BIM. Os participantes aprendem sobre padrões BIM, interoperabilidade de software, coordenação de equipes multidisciplinares e gestão de informações.

 

Certificação BIM: Além de cursos acadêmicos, existem certificações específicas em BIM que validam o conhecimento e as habilidades dos profissionais nessa área. Exemplos incluem a Certificação Profissional em BIM (CPBIM) e a Certificação Autodesk Revit, entre outras.

 

Esses cursos e certificações fornecem uma base sólida para profissionais interessados em se especializar em BIM, permitindo-lhes aplicar efetivamente essa tecnologia em suas práticas profissionais e se destacar em um mercado competitivo.

 

2. Sustentabilidade e Design Verde

Com a crescente preocupação com questões ambientais, a especialização em sustentabilidade e design verde tornou-se essencial para arquitetos e engenheiros. Isso envolve a integração de práticas e tecnologias que minimizam o impacto ambiental dos edifícios, desde a seleção de materiais sustentáveis até a implementação de sistemas de energia renovável e eficiência energética.

quitetura-corporativa-sustentavel-10
FONTE: Pett Capellato

 

3. Engenharia Estrutural 

A engenharia estrutural avançada é uma especialização que se concentra no projeto e análise de estruturas complexas, como arranha-céus, pontes e estruturas subterrâneas. Isso requer um profundo conhecimento de mecânica estrutural, materiais de construção e técnicas de modelagem avançadas.

10 Principais especializações que todo arquiteto e engenheiro deveria fazer
FONTE: Alivearound

 

4. Arquitetura de Interiores e Design de Espaços

A especialização em arquitetura de interiores e design de espaços permite aos profissionais criar ambientes funcionais e esteticamente atraentes. Isso envolve o domínio de conceitos de ergonomia, iluminação, acústica e seleção de materiais para criar espaços que atendam às necessidades e preferências dos usuários.

10 Principais especializações que todo arquiteto e engenheiro deveria fazer
FONTE: Freepik

 

5. Gerenciamento de Projetos de Construção

O gerenciamento de projetos de construção é uma habilidade essencial para arquitetos e engenheiros que desejam assumir papéis de liderança em empreendimentos de grande escala. Isso inclui o planejamento, coordenação e controle de todas as fases do projeto, desde a concepção até a conclusão, garantindo que prazos, orçamentos e padrões de qualidade sejam cumpridos.

10 Principais especializações que todo arquiteto e engenheiro deveria fazer
FONTE: Freepik

 

6. Tecnologia de Impressão 3D e Fabricação Digital

A tecnologia de impressão 3D e fabricação digital está transformando a maneira como os edifícios são projetados e construídos. Uma especialização nesse campo capacita os profissionais a explorar novas possibilidades de design e construção, desde estruturas complexas até componentes personalizados, utilizando técnicas de fabricação aditiva.

 

7. Reabilitação e Restauro de Edifícios Históricos

A reabilitação e o restauro de edifícios históricos exigem um conjunto único de habilidades que combinam conhecimentos técnicos com sensibilidade histórica e cultural. Essa especialização permite aos profissionais preservar e revitalizar o patrimônio arquitetônico, garantindo sua integridade estrutural e valor cultural.

 

8. Arquitetura Escolar

A pós em Arquitetura Escolar abrange conceitos essenciais para o planejamento e execução de projetos em escolas e demais ambientes educativos. Esses locais demandam preocupação extra com acessibilidade e conforto termoacústico, por exemplo. Por isso, especializar-se na área é importante para garantir o padrão de qualidade e a segurança das obras.

 

Ao longo do curso, os profissionais desenvolvem competências que permitem realizar a análise estrutural dos terrenos e propor soluções com base em critérios técnicos e normativos, prezando também pelo uso consciente dos recursos.

10 Principais especializações que todo arquiteto e engenheiro deveria fazer
FONTE: ClipEscola

 

9. Tecnologia de Energia Renovável e Eficiência Energética

Com o aumento da demanda por soluções energéticas sustentáveis, a especialização em tecnologia de energia renovável e eficiência energética tornou-se fundamental. Isso envolve o conhecimento de sistemas de energia solar, eólica, geotérmica e outras fontes renováveis, bem como estratégias para minimizar o consumo de energia em edifícios.

 

10. Desenvolvimento de Soft Skills: Comunicação, Liderança e Colaboração

Além das habilidades técnicas, é essencial para arquitetos e engenheiros desenvolverem soft skills, como comunicação eficaz, liderança e colaboração em equipe. Essas habilidades são fundamentais para o sucesso em projetos multidisciplinares e para a construção de relacionamentos sólidos com clientes, colegas e partes interessadas.

 

CONCLUSÃO

Em conclusão, a busca por especializações em áreas específicas é essencial para que arquitetos e engenheiros se destaquem em um mercado cada vez mais exigente e diversificado. Ao adquirir conhecimentos especializados e desenvolver habilidades técnicas e interpessoais, os profissionais podem ampliar suas oportunidades de carreira e contribuir para a criação de ambientes construídos mais sustentáveis, funcionais e inspiradores.

Boas Práticas para Exportar IFC do Archicad

capa_ARTIGO copiar

Boas Práticas para Exportar IFC do Archicad


O formato Industry Foundation Classes (IFC) é uma norma internacional para a representação de informações sobre a construção e gestão de instalações ao longo de seu ciclo de vida. No contexto da modelagem de informações da construção (BIM), exportar modelos para o formato IFC tornou-se uma prática comum para facilitar a colaboração entre diferentes softwares e partes interessadas em projetos de construção. O Archicad, um software líder em modelagem BIM, oferece recursos avançados para a exportação de modelos para o formato IFC. Neste artigo, exploraremos boas práticas para otimizar o processo de exportação de IFC a partir do Archicad.

 

1. Modelo BIM Coerente

Antes de exportar para o formato IFC, é crucial garantir que o modelo BIM no Archicad esteja coerente e bem-estruturado. Isso inclui a verificação da consistência geométrica, atribuição correta de propriedades e uso adequado de objetos paramétricos. Um modelo BIM bem-preparado resultará em uma exportação IFC mais eficiente e precisa.

 

Boas práticas para exportar IFC do Archicad
Fonte: FreePik

 

2. Padronização de Nomes e Classificações

A padronização de nomes e classificações é fundamental para a interoperabilidade entre diferentes softwares. Certifique-se de que os elementos do modelo tenham nomes claros e consistentes, seguindo convenções de nomenclatura específicas. Além disso, atribuir classificações IFC padronizadas aos objetos do modelo facilita a interpretação correta dos dados durante a exportação.

3. Atribuição de Propriedades

O Archicad permite a atribuição de propriedades específicas a elementos do modelo, contribuindo para uma representação mais rica e precisa no formato IFC. Considere adicionar informações relevantes, como materiais, dimensões, e dados específicos do cliente. A precisão dessas propriedades é crucial para a utilização eficaz dos modelos IFC em outros softwares.

Boas práticas para exportar IFC do Archicad
Fonte: aecweb

4. Coordenação de Sistemas de Coordenadas

Garanta que os sistemas de coordenadas do modelo estejam corretamente configurados antes da exportação para IFC. Isso é vital para garantir a consistência espacial e a correta localização dos elementos no modelo. A coordenação adequada simplifica o processo de integração com outros modelos e a análise colaborativa.

Boas práticas para exportar IFC do Archicad
Fonte: Graphisoft

 

5. Verificação de Conformidade com Padrões IFC

Antes de exportar, verifique se o modelo está em conformidade com os padrões IFC. O Archicad possui configurações específicas para ajustar a exportação de acordo com as normas IFC relevantes. Certifique-se de selecionar a versão apropriada do padrão IFC e ajustar as configurações conforme necessário.

6. Utilização de Templates IFC Personalizados

O Archicad oferece a capacidade de criar e usar templates IFC personalizados. Isso é particularmente útil quando há requisitos específicos de interoperabilidade ou padrões exclusivos definidos pelos stakeholders do projeto. Criar e aplicar templates personalizados simplifica a exportação, garantindo a consistência nos dados exportados.

Boas práticas para exportar IFC do Archicad
Fonte: Graphisoft

Conclusão

Exportar modelos BIM para o formato IFC no Archicad é uma prática essencial para a colaboração eficiente em projetos de construção. Ao seguir as boas práticas mencionadas acima, os profissionais podem garantir uma exportação suave e uma representação precisa dos dados no formato IFC. Essas práticas não apenas facilitam a colaboração entre diferentes plataformas BIM, mas também contribuem para a integridade e a qualidade dos dados ao longo do ciclo de vida do projeto.

NORMAS DE BIM

NORMAS DE BIM

O BIM tem sido uma força transformadora na indústria da AEC. Essa abordagem inovadora de projeto e gerenciamento de informações está ajudando a melhorar a eficiência, a qualidade e a colaboração em projetos de construção em todo o mundo. No entanto, para garantir sua eficácia e interoperabilidade, normas e diretrizes são essenciais. Neste artigo, exploraremos a importância das normas de BIM e como elas estão moldando a indústria da construção.

 

O que é uma norma BIM?

Uma norma BIM é um conjunto de diretrizes, requisitos e padrões que estabelecem as melhores práticas e a estrutura para a implementação eficaz da metodologia em projetos de construção e gerenciamento de ativos. Elas são desenvolvidas para garantir que todas as partes envolvidas em um projeto compreendam e sigam um conjunto comum de regras para criar, compartilhar e gerenciar informações em um ambiente BIM.

 

O papel das normas em um ambiente BIM

O BIM envolve a criação e o gerenciamento de modelos digitais tridimensionais que contêm informações detalhadas sobre todos os aspectos de um projeto, desde geometria até custos e especificações de materiais. Para que ele funcione de maneira eficaz, é necessário um conjunto comum de normas e diretrizes que estabeleçam padrões para a criação, compartilhamento e troca de informações entre as diversas partes envolvidas.

 

As principais normas de BIM

Existem várias normas em uso em todo o mundo, mas algumas das mais reconhecidas incluem:

ISO 19650: Gerenciamento de informações de construção e de ativos construídos – A ISO 19650 é uma norma internacional que define os princípios e requisitos para o gerenciamento de informações de construção e ativos construídos usando a metodologia BIM. Ela estabelece diretrizes para a organização e a troca de informações ao longo do ciclo de vida de um projeto.

LOD (Level of Development) e LOI (Level of Information): O LOD e o LOI são sistemas de classificação que definem o nível de detalhe e a confiabilidade das informações contidas em um modelo BIM em diferentes estágios de um projeto. Eles ajudam a garantir que todas as partes envolvidas tenham expectativas claras sobre a precisão e a integridade das informações.

COBie (Construction Operations Building Information Exchange): O COBie estabelece um formato padronizado para a entrega de informações de construção e operação em um formato eletrônico. Facilita a transição suave de informações do projeto para a operação e manutenção de edifícios e infraestruturas.

NBIMS (National BIM Standard): Os NBIMS são um conjunto de normas de BIM desenvolvidas nos Estados Unidos. Eles abordam uma ampla variedade de tópicos relacionados a metodologia, incluindo padronização de termos, troca de dados, interoperabilidade e práticas recomendadas.

 

Benefícios das normas de BIM

Interoperabilidade aprimorada: Normas claras e consistentes facilitam a troca de informações entre diferentes sistemas e plataformas BIM, garantindo que todos os envolvidos possam colaborar eficazmente.

Redução de erros e retrabalho: A padronização de processos e informações ajuda a evitar erros e retrabalho, economizando tempo e recursos.

Facilitação da colaboração: Normas de BIM promovem uma colaboração mais eficaz entre todas as partes envolvidas em um projeto, melhorando a comunicação e a coordenação.

Melhoria da qualidade: Ao estabelecer padrões de qualidade e precisão, as normas de BIM ajudam a garantir que os projetos sejam entregues com alto nível de qualidade.

Importância do BIM Mandate e PEB

A implementação de diretrizes de Modelagem da Informação da Construção (BIM) e do Plano de Execução de BIM (PEB) em empresas da indústria da construção é crucial para melhorar a eficiência, a qualidade e a colaboração no setor. Embora possa não haver uma lei consolidada que exija o uso de BIM em todos os projetos de construção, existem várias razões pelas quais as empresas devem considerar a criação de suas próprias normas internas.

 

1. Melhoria da eficiência e da produtividade:
O uso de BIM ajuda as empresas a melhorar a eficiência em todas as fases do ciclo de vida de um projeto, desde o design até a construção e operação. A padronização de processos e a adoção de diretrizes internas de BIM podem aumentar a produtividade, reduzir erros e retrabalho, e economizar tempo e recursos.

2. Qualidade e consistência:
Ao estabelecer normas internas de BIM, as empresas podem garantir que todos os membros da equipe estejam alinhados com as melhores práticas. Isso ajuda a manter a qualidade do trabalho, garantindo que todos os projetos atendam aos mesmos padrões e requisitos.

3. Facilitação da colaboração:
O BIM é uma metodologia que promove a colaboração entre todas as partes envolvidas em um projeto de construção. Ao criar diretrizes internas de BIM, as empresas podem estabelecer regras claras e protocolos de comunicação, facilitando a cooperação entre arquitetos, engenheiros, empreiteiros e outros stakeholders.

4. Redução de riscos:
A padronização de processos e a implementação de normas internas de BIM podem ajudar a reduzir os riscos associados a erros de projeto, atrasos e custos adicionais. Isso é particularmente importante em um setor como a construção, onde os custos excessivos e os atrasos podem ter impactos significativos nos resultados financeiros.

5. Preparação para o futuro:
Embora não haja uma lei mandatória relacionada ao BIM em todos os lugares, é uma tendência global que está se tornando cada vez mais prevalente. Ao estabelecer normas internas de BIM e desenvolver expertise na área, as empresas estarão mais bem preparadas para atender a futuras regulamentações e exigências do mercado.

6. Vantagem competitiva:
Empresas que adotam o BIM e estabelecem normas internas têm a oportunidade de se destacar da concorrência. Clientes que buscam projetos de alta qualidade e eficiência podem dar preferência a empresas que demonstram um compromisso com a inovação e a melhoria contínua por meio do BIM.

 

Cadernos CBIC e Caderno do Paraná

Os “Cadernos CBIC” e o “Caderno do Paraná” desempenham um papel crucial no estabelecimento de normas brasileiras para o BIM. Com sua base sólida de conhecimento prático e experiências reais da indústria da construção no Brasil, essas referências fornecem diretrizes adaptadas à realidade nacional, promovendo as melhores práticas e a padronização. Além disso, esses recursos servem como um alicerce valioso para o desenvolvimento de normas nacionais no BIM, contribuindo para a eficiência, qualidade e uniformidade na implementação dessa metodologia no setor de construção brasileiro.

Conclusão

As normas de BIM desempenham um papel fundamental na garantia da eficácia e do sucesso da implementação do BIM na indústria da construção. Elas estabelecem diretrizes claras para a criação, o compartilhamento e o gerenciamento de informações, promovendo a colaboração, a eficiência e a qualidade em todos os estágios de um projeto de construção. À medida que o BIM continua a crescer em importância, a adoção de normas sólidas se torna essencial para impulsionar a inovação e a excelência na construção civil. Portanto, a compreensão e a aplicação dessas normas são essenciais para profissionais e organizações que desejam estar na vanguarda da indústria da construção.

A influência do BIM na valorização imobiliária

A influência do BIM na valorização imobiliária

A indústria imobiliária tem passado por mudanças significativas nas últimas décadas, e uma das tendências mais notáveis é a crescente adoção do BIM. O BIM é uma abordagem que revoluciona a forma como projetos de construção são concebidos, desenvolvidos e gerenciados, e sua influência na valorização de propriedades imobiliárias é inegável. Neste artigo, exploraremos em detalhes como o BIM está impactando a valorização imobiliária e por que é uma ferramenta essencial para o sucesso no setor.

 

Entendendo o BIM

Antes de mergulharmos na relação entre o BIM e a valorização imobiliária, é fundamental compreender o que exatamente é o BIM e como funciona. O BIM é uma abordagem colaborativa que envolve a criação de modelos digitais detalhados que representam todas as informações relacionadas a um projeto de construção, desde o projeto arquitetônico até os aspectos estruturais e mecânicos. Esses modelos contêm dados precisos e atualizados, permitindo que todas as partes envolvidas no projeto tenham acesso a informações consistentes e atualizadas em tempo real.

 

Fonte: SPBIM

O que é a valorização de imóveis?

A valorização de imóveis refere-se ao aumento do valor de uma propriedade ao longo do tempo, sendo influenciada por diversos fatores. A localização desempenha um papel central nesse processo, com propriedades situadas em áreas desejáveis, como bairros seguros e bem servidos, geralmente se valorizando mais rapidamente. Além disso, a condição e manutenção desempenham um papel importante, pois imóveis bem cuidados tendem a se valorizar mais do que os negligenciados.

Outros fatores que impactam incluem a demanda no mercado, com áreas com alta procura, geralmente apresentando maior valorização. O crescimento econômico também influencia, já que regiões em crescimento com oportunidades econômicas atraem mais compradores e impulsionam os preços. Investimentos em infraestrutura, como transporte e educação, podem aumentar o valor das propriedades.

As taxas de juros desempenham um papel significativo, pois taxas mais baixas tornam o financiamento imobiliário mais acessível. Por fim, as tendências de mercado e eventos imprevisíveis podem afetar a valorização. Vale ressaltar que, embora investir em imóveis possa ser uma estratégia financeira sólida, a valorização não é garantida e pode variar dependendo da localização e das condições do mercado. Portanto, é essencial realizar uma pesquisa cuidadosa antes de tomar decisões de investimento imobiliário, compreendendo como esses fatores interagem em um mercado específico.

Fonte: Ativores Investment

Qual o papel do BIM na valorização imobiliária?

Aumento da qualidade de projeto

Uma das maneiras mais evidentes pelas quais o BIM influencia a valorização imobiliária é por meio da melhoria na qualidade do projeto. Com modelos BIM, os projetistas podem visualizar o projeto de forma mais precisa, identificar problemas antes da construção e tomar decisões mais informadas. Isso resulta em projetos que atendem às expectativas dos compradores ou locatários, evitando retrabalhos e custos extras.

Eficiência na construção e manutenção

O BIM também aprimora a eficiência na fase de construção e na subsequente manutenção de edifícios. Com modelos BIM, empreiteiros podem otimizar o planejamento da construção, evitar conflitos no canteiro de obras e melhorar a coordenação entre as equipes. Isso resulta em prazos mais curtos e custos mais baixos. Além disso, na fase de operação e manutenção, o acesso a dados precisos sobre os componentes do edifício permite uma manutenção mais eficaz e, portanto, a valorização contínua da propriedade.

Sustentabilidade

A sustentabilidade é um fator crucial na valorização imobiliária nos dias de hoje, e o BIM desempenha um papel importante nesse aspecto. Os modelos BIM facilitam a integração de estratégias de sustentabilidade desde a fase de projeto. Isso pode incluir a escolha de materiais mais ecológicos, otimização do desempenho energético e gestão eficaz dos recursos naturais. A adoção de práticas sustentáveis não apenas atrai um público mais consciente do meio ambiente, mas também pode levar a certificações que aumentam o valor de mercado de uma propriedade.

Fonte: Freepik

Tomada de decisão assertiva

O BIM fornece informações valiosas para os investidores e compradores de propriedades imobiliárias. Eles podem acessar os modelos BIM para obter uma compreensão mais profunda da estrutura e dos sistemas de um edifício, bem como das projeções de custos de operação a longo prazo. Isso facilita a tomada de decisões informadas e ajuda a justificar investimentos em propriedades que ofereçam um valor sustentável e a longo prazo.

 

Conclusão

Em um mercado imobiliário cada vez mais competitivo, a valorização de propriedades é essencial. O BIM se tornou uma ferramenta indispensável para atingir esse objetivo. Desde a melhoria na qualidade do projeto até a eficiência na construção, a sustentabilidade e a facilitação de decisões informadas, o BIM está transformando a forma como o setor imobiliário opera. Aqueles que adotam essa abordagem inovadora estão em uma posição mais vantajosa para maximizar o valor de suas propriedades e atender às crescentes demandas do mercado imobiliário atual. Portanto, não é exagero afirmar que o BIM está moldando o futuro da valorização imobiliária.

O que é Path of Construction no BIM?

O que é Path of Construction no BIM?

O Building Information Modeling revolucionou a forma como a indústria da construção projeta, constrói e gerencia edifícios e infraestruturas. Uma das características essenciais do BIM é a capacidade de criar modelos digitais 3D detalhados de um projeto, que servem como uma fonte centralizada de informações para todas as partes envolvidas no ciclo de vida do edifício. Dentro do contexto do BIM, o “Path of Construction” (caminho da construção) desempenha um papel crucial. Neste artigo, exploraremos o que é e como influencia o processo de construção.

 

O conceito básico do BIM

Antes de mergulharmos no Path of Construction, é importante entender o conceito fundamental do BIM. Ele é uma metodologia que utiliza modelos digitais tridimensionais para representar todas as informações relacionadas a um projeto. Esses modelos contêm não apenas geometria 3D, mas também informações detalhadas sobre materiais, custos, prazos, sistemas mecânicos e elétricos, entre outros. Em essência, o BIM cria um ambiente digital colaborativo que permite que todas as partes envolvidas no projeto acessem e compartilhem informações em tempo real.

 

Fonte: SPBIM

 

O Path of Construction no BIM

Também conhecido como PoC ou Construction Sequencing, é uma aplicação específica do BIM que se concentra na simulação e planejamento da sequência de construção. Ele permite que os profissionais visualizem e analisem como o projeto evoluirá ao longo do tempo, desde o início da escavação até a conclusão da obra. Isso é particularmente útil para identificar potenciais conflitos, otimizar os processos e melhorar o gerenciamento do cronograma.

 

Principais funcionalidades do Path of Construction:

As funcionalidades do PoC só atingem seu potencial máximo com o auxilío do BIM, sendo elas:

 

1. Visualização da sequência de construção: Ele permite que as equipes de projeto e construção visualizem o processo de construção passo a passo, identificando áreas de sobreposição ou interferência entre diferentes elementos da obra.

 

Fonte: Utilizando BIM

 

2. Análise de conflitos: Ao simular a sequência de construção, é possível identificar antecipadamente potenciais conflitos entre atividades ou sistemas construtivos. Isso ajuda a evitar atrasos e retrabalho.

Fonte: SPBIM

 

3. Otimização do cronograma: O PoC permite ajustar o cronograma de construção com base na análise da sequência de trabalho. Isso pode resultar em economia de tempo e recursos.

4. Tomada de decisões informadas: Com uma visão clara da sequência de construção, os tomadores de decisão podem tomar medidas proativas para mitigar riscos e melhorar a eficiência do projeto.

5. Comunicação aprimorada: O Path of Construction facilita a comunicação entre todas as partes envolvidas no projeto, incluindo arquitetos, engenheiros, empreiteiros e proprietários, promovendo uma compreensão comum do processo de construção.

Fonte: SPBIM

 

Ferramentas de software BIM para PoC

1. Navisworks: Uma plataforma de gerenciamento de projetos da Autodesk que permite a simulação de construção e a detecção de conflitos.

 

Fonte: Autodesk

 

2. Synchro: Uma ferramenta especializada em simulação de construção e planejamento de projeto.

3. BIM 4D: Uma extensão do BIM que adiciona a dimensão de tempo, permitindo a criação de modelos 4D para simulação de construção.

4. Tekla Structures: Especializado em modelagem estrutural, o Tekla também oferece recursos para simulação de sequência de construção.

 

Conclusão

O Path of Construction no BIM é uma poderosa ferramenta que revoluciona a maneira como os projetos de construção são planejados e executados. Ele oferece às equipes de construção uma visão clara e detalhada da sequência de trabalho, permitindo a identificação antecipada de conflitos e a otimização do cronograma. Como resultado, os projetos são entregues de maneira mais eficiente, dentro do prazo e do orçamento. À medida que a tecnologia BIM continua a evoluir, podemos esperar que o Path of Construction desempenhe um papel ainda mais significativo na melhoria da indústria da construção.

As melhores práticas para modelagem 3D no BIM

As melhores práticas para modelagem 3D no BIM

A modelagem 3D no BIM revolucionou a indústria da construção, proporcionando uma abordagem mais eficiente e precisa para o projeto, construção e gerenciamento de edifícios e infraestruturas. Através do BIM, os profissionais podem criar modelos virtuais detalhados que contêm informações úteis para todas as fases do ciclo de vida de uma construção. No entanto, para aproveitar ao máximo o potencial desta ferramenta, é fundamental seguir as melhores práticas de modelagem 3D. Neste artigo, exploraremos algumas dessas práticas essenciais.

 

1. Planejamento adequado

Antes de iniciar qualquer projeto em BIM, é crucial investir tempo em um planejamento cuidadoso. Isso inclui definir os objetivos do projeto, identificar as informações necessárias e estabelecer padrões de modelagem. Um BEP bem elaborado ajuda a garantir que todas as partes envolvidas compreendam suas responsabilidades e expectativas em relação ao modelo 3D.

 

2. Consistência na nomenclatura

Manter uma nomenclatura consistente é vital para facilitar a comunicação e o compartilhamento. Estabeleça convenções de nomenclatura claras para elementos, camadas, vistas e propriedades. Isso tornará mais fácil para toda a equipe entender e usar o modelo de forma eficaz.

 

3. Detalhamento adequado

A qualidade do modelo depende do nível de detalhamento adequado. Evite a inclusão de detalhes excessivos que possam tornar o modelo pesado e difícil de gerenciar. Em vez disso, concentre-se em representar com precisão os elementos mais relevantes para o projeto e as fases de construção subsequentes.

 

Fonte: Caderno BIM Santa Catarina

4. Uso de elementos paramétricos

 

A modelagem paramétrica é uma das principais características do BIM. Ao criar elementos paramétricos, você pode definir suas propriedades e relações com outros elementos. Isso permite que as mudanças sejam automaticamente refletidas em todo o modelo quando ocorrem alterações no design, economizando tempo e reduzindo erros.

 

5. Colaboração e coordenação

O BIM é uma abordagem colaborativa, e a modelagem 3D desempenha um papel crucial na coordenação entre disciplinas. Garanta que seu modelo seja facilmente compartilhável e interoperável com as ferramentas BIM usadas por outras equipes. Use modelos federados para verificar a colisão entre elementos de diferentes disciplinas e resolver problemas antes que eles se tornem custosos no canteiro de obras.

 

Fonte: SPBIM

 

6. Manutenção e atualização constante

Um modelo 3D no BIM não é uma entidade estática. Deve ser atualizado conforme o projeto evolui e as mudanças ocorrem. Mantenha um processo de gerenciamento de alterações eficaz e mantenha um registro de todas as revisões do modelo para garantir que ele permaneça preciso e útil ao longo do ciclo de vida do projeto.

 

7. Documentação clara e precisa

A modelagem 3D no BIM não substitui a necessidade de documentação clara e precisa. Os desenhos 2D ainda são necessários para a comunicação e a construção eficaz. Use os modelos tridimensionais como uma fonte de informações para gerar desenhos e documentação detalhada.

 

Fonte: SPBIM

 

8. Treinamento e capacitação

Investir em treinamento e capacitação para sua equipe é essencial para garantir a aplicação eficaz das melhores práticas de modelagem 3D no BIM. Manter-se atualizado com as últimas tendências e tecnologias BIM também é crucial para permanecer competitivo na indústria.

 

Fonte: Treinamento SPBIM

 

Conclusão

A modelagem 3D no BIM oferece inúmeras vantagens na indústria da construção, mas apenas quando as melhores práticas são seguidas de perto. O planejamento adequado, a consistência na nomenclatura, o detalhamento correto, o uso de elementos paramétricos e a colaboração são elementos-chave para o sucesso. Ao adotar e implementar essas práticas, os profissionais da construção podem maximizar a eficiência, a precisão e a colaboração em seus projetos BIM, resultando em edifícios e infraestruturas de maior qualidade e menor custo.

O QUE É SCRUM?

O QUE É SCRUM?

A construção civil é uma indústria que está passando por uma revolução tecnológica e organizacional nos últimos anos. A busca por métodos mais eficientes e produtivos para concluir projetos de construção levou à adoção de abordagens ágeis, como o Scrum.

O que é Scrum?

O Scrum é um framework ágil de gestão de projetos que se originou no desenvolvimento de software, mas que tem sido amplamente adotado em diversas áreas, incluindo a construção civil. Ele se baseia em princípios de transparência, inspeção e adaptação, promovendo a colaboração e a comunicação eficaz entre as equipes de projeto.

É conhecido por sua flexibilidade e ênfase na adaptação contínua. Permite que as equipes respondam rapidamente a mudanças nos requisitos do projeto ou nas necessidades do cliente. Além disso, promove a transparência, pois todos os envolvidos têm acesso à lista de tarefas (backlog) e ao progresso do trabalho.

Principais componentes e conceitos do Scrum:

Esta ferramenta é um framework ágil de gerenciamento de projetos e desenvolvimento de produtos que se baseia em princípios colaborativos e iterativos para entregar valor de forma mais eficaz. Um dos principais componentes do SCRUM é o Time Scrum, que consiste em um grupo de profissionais multifuncionais que trabalham em conjunto para criar um produto ou entregar um projeto. O Time Scrum é auto-organizado e responsável por planejar, executar e revisar o trabalho.

O Product Owner é outro componente crucial do SCRUM. Ele é o responsável por definir e priorizar os requisitos do produto, representando os interesses dos clientes e stakeholders. O Product Owner trabalha em estreita colaboração com o Time Scrum para garantir que o produto atenda às necessidades do mercado.

O Scrum Master é o terceiro componente fundamental. Este papel atua como um facilitador e líder de equipe, garantindo que o Time Scrum siga os princípios e práticas do SCRUM. O Scrum Master remove obstáculos, ajuda a equipe a melhorar continuamente e assegura que as regras do SCRUM sejam seguidas.

Outros conceitos importantes incluem o Backlog do Produto, que é uma lista priorizada de todos os requisitos do produto, e as Sprints, que são iterações de trabalho de curto prazo (geralmente de 2 a 4 semanas) durante as quais o Time Scrum se concentra na entrega de um conjunto específico de funcionalidades. Além disso, o SCRUM inclui várias reuniões, como a Sprint Planning (planejamento da Sprint), Daily Scrum (reunião diária), Sprint Review (revisão da Sprint) e Sprint Retrospective (retrospectiva da Sprint), que são vitais para a comunicação, inspeção e adaptação contínuas dentro da equipe SCRUM.

 

Fonte: MindMaster

 

Como o Scrum pode ser aplicado na construção civil?

A implementação do SCRUM na construção civil oferece uma abordagem ágil para gerenciar projetos de construção complexos, alinhando-se com os princípios fundamentais deste framework. Primeiramente, a colaboração multidisciplinar é essencial. Neste contexto, o “Time Scrum” pode ser composto por arquitetos, engenheiros, empreiteiros, e outros profissionais necessários para o projeto. Eles trabalham em conjunto, quebrando o projeto em etapas menores, tornando-o mais gerenciável e permitindo a entrega de valor incremental ao longo do tempo.

O “Product Owner” em uma equipe de construção civil representa os interesses dos clientes e partes interessadas, definindo prioridades e requisitos do projeto. Este papel é crucial para garantir que o projeto atenda às necessidades do cliente e que as mudanças possam ser acomodadas ao longo do processo de construção.

A utilização do “Backlog do Produto” no contexto da construção civil envolve a lista de tarefas, atividades e requisitos específicos do projeto, que é priorizada e atualizada regularmente. As “Sprints” na construção podem ser períodos definidos de trabalho, como semanas ou meses, em que as equipes se concentram em entregar um conjunto específico de tarefas ou uma parte do projeto maior. As reuniões SCRUM, como a Sprint Planning, Daily Scrum, Sprint Review e Sprint Retrospective, são oportunidades para a equipe se reunir, compartilhar informações, planejar o trabalho, identificar problemas e melhorar continuamente o processo de construção.

Sua implementação na construção civil promove a transparência, a adaptabilidade e a entrega eficiente de projetos, ao mesmo tempo em que permite que as equipes se adaptem a mudanças nas necessidades do cliente e do ambiente de construção, tornando o processo mais flexível e orientado a resultados.

Benefícios do Scrum na construção civil

1. Redução de custos: A gestão eficiente de recursos e a identificação precoce de problemas podem reduzir os custos do projeto.

2. Entrega mais rápida: O uso de Sprints permite a entrega de partes do projeto de forma mais rápida, o que pode ser importante em projetos com prazos apertados.

3. Maior qualidade: A ênfase na definição de critérios de qualidade e na inspeção contínua leva a um produto final de maior qualidade.

4. Maior flexibilidade: O Scrum permite que as equipes se adaptem a mudanças nos requisitos do projeto de forma mais eficaz.

5. Maior envolvimento das partes interessadas: As partes interessadas são envolvidas de forma mais próxima durante o processo, o que pode levar a um melhor entendimento das necessidades do cliente.

 

Fonte: Sotto Maior e Nagel advogados

 

Conclusão

O Scrum é uma abordagem ágil que pode ser altamente benéfica na construção civil, ajudando a melhorar a gestão de projetos, aumentar a eficiência e entregar resultados de alta qualidade. Ao definir metas claras, planejar Sprints, promover a colaboração e comunicação, e focar na inspeção e adaptação, as equipes de construção podem enfrentar os desafios da indústria de forma mais eficaz e satisfazer as expectativas dos clientes. Como este mercado continua a evoluir, ele se apresenta como uma ferramenta valiosa para impulsionar o sucesso dos projetos.

 

Caso tenha gostado deste artigo, sugerimos a leitura: O QUE É DESIGN THINKING? 

O QUE É DESIGN THINKING?

O que é Design Thinking e como ele pode transformar a inovação

 

O Design Thinking é uma abordagem inovadora para a resolução de problemas e criação de soluções centradas no ser humano. Ele se tornou uma poderosa ferramenta para empresas, organizações e indivíduos que buscam inovar de maneira eficaz, colocando as necessidades e desejos dos usuários no centro de seus processos. Neste artigo, exploraremos o que é, seus princípios fundamentais, como ele pode transformar a inovação e ser usado na construção civil.

Fonte: ITSM House

 

O que é Design Thinking?

Ele é um processo de resolução de problemas que se concentra na empatia, colaboração e experimentação. Foi originalmente desenvolvido em Stanford na década de 1980, mas desde então se espalhou para diversas áreas, incluindo negócios, design de produtos, serviços de saúde e governo. Em sua essência envolve as seguintes etapas:

 

1. Empatia: O primeiro passo é entender profundamente as necessidades e perspectivas dos usuários ou clientes. Isso envolve a realização de pesquisas, entrevistas e observações para criar empatia com as pessoas para as quais você está projetando.

2. Definição do problema: Com base na empatia desenvolvida na etapa anterior, você define claramente o problema que deseja resolver. Essa etapa envolve a síntese das informações coletadas e a formulação de um “ponto de vista do usuário” que guiará o processo de design.

3. Idealização: Nesta fase, você gera uma ampla gama de ideias para abordar o problema definido. Isso é frequentemente feito em sessões de brainstorming criativo, onde não há julgamento de ideias. O objetivo é criar um grande volume de conceitos.

4. Prototipagem: Aqui, você transforma suas ideias em protótipos tangíveis. Eles podem ser desenhos, modelos físicos, representações digitais ou qualquer outra forma que permita testar e refinar suas soluções de maneira rápida e econômica.

5. Teste: Os protótipos são apresentados aos usuários para obter feedback real. Isso ajuda a identificar o que funciona e o que não funciona, permitindo ajustes e melhorias iterativas.

6. Implementação: Após testar e refinar suas soluções com base no feedback do usuário, você está pronto para implementar a solução final.

 

Fonte: Medium

 

Princípios fundamentais do Design Thinking

 

1. Centrado no ser humano: O usuário está no centro de todo o processo. Compreender suas necessidades, motivações e desejos é fundamental para criar soluções significativas.

2. Pensamento interativo: O Design Thinking valoriza a experimentação e a interação. Ele reconhece que é improvável criar a resolução perfeita na primeira tentativa e, portanto, incentiva ajustes contínuos com base no feedback do consumidor.

3. Colaboração multidisciplinar: Equipes diversas, com diferentes perspectivas e habilidades, são essenciais para a criatividade e a resolução de problemas eficaz.

4. Foco em problemas mal definidos: Esta ferramenta é particularmente eficaz quando se trata de problemas complexos e mal definidos, nos quais as soluções tradicionais podem não ser adequadas.

5. Prototipagem rápida e econômica: A prototipagem permite testar ideias de forma rápida e econômica, economizando tempo e recursos.

Fonte: Belas Artes

 

Design Thinking na construção civil

 

1. Design de espaços habitacionais e comerciais: No setor imobiliário, ele pode ser usado para projetar espaços residenciais e comerciais que atendam às necessidades e preferências dos ocupantes. Isso envolve a realização de pesquisas para compreender as necessidades dos futuros moradores ou proprietários e, em seguida, projetar espaços que atendam a essas necessidades de maneira inovadora.

2. Design de ambientes sustentáveis: Ele pode ser aplicado para criar ambientes sustentáveis e ecologicamente corretos. Isso inclui a incorporação de soluções de eficiência energética, reciclagem de materiais e design que aproveita ao máximo a luz natural e a ventilação, reduzindo assim o impacto ambiental dos edifícios.

3. Melhoria de processos construtivos: O setor da construção pode se beneficiar da ferramenta ao repensar e otimizar os processos construtivos. Isso pode incluir a identificação de ineficiências em termos de custos e prazos, bem como a busca por maneiras de melhorar a segurança dos trabalhadores no canteiro de obras.

4. Projeto de infraestrutura urbana: No planejamento e desenvolvimento de infraestrutura urbana, como sistemas de transporte, redes de água e saneamento, a ferramenta pode ser usada para criar soluções que melhorem a qualidade de vida dos residentes e a eficiência das cidades.

5. Design de materiais e tecnologia de construção: Sua aplicação na pesquisa e desenvolvimento de novos materiais de construção e tecnologias pode ser muito benéfica. Isso pode levar à criação de materiais mais duráveis, sustentáveis e econômicos, bem como ao desenvolvimento de técnicas de construção mais avançadas.

6. Reabilitação e renovação de edifícios antigos: Ao lidar com edifícios antigos que precisam ser renovados ou reabilitados, o uso da ferramenta para preservar elementos históricos enquanto se adapta o espaço às necessidades modernas. Isso requer um equilíbrio entre a conservação do patrimônio e a introdução de elementos contemporâneos.

7. Soluções de acessibilidade: Na construção de edifícios públicos, residências e instalações comerciais pode ser usado para criar soluções que tornem os espaços mais acessíveis para pessoas com deficiência, melhorando a inclusão e a acessibilidade.

8. Gestão de resíduos de construção: Promove o encontro de maneiras inovadoras de reduzir o desperdício de materiais de construção e promover a reciclagem e reutilização, contribuindo para a sustentabilidade na construção civil.

9. Experiência do cliente: Além da infraestrutura física, também pode ser usado para melhorar a experiência geral do cliente, desde a concepção do projeto até a entrega e o pós-venda.

 

Fonte: Banib

 

Transformando a inovação

Uma ferramenta poderosa para empresas e organizações que buscam inovar de maneira significativa. Ele permite que as empresas se afastem de abordagens tradicionais, orientadas por processos, e adotem uma mentalidade mais orientada para o usuário.

Além disso, o Design Thinking promove uma cultura de inovação ao incentivar a experimentação e a aprendizagem contínua. Ele também ajuda as empresas a se adaptarem mais rapidamente às mudanças nas necessidades e expectativas dos clientes.

Em resumo, ele é uma abordagem holística para a inovação que coloca o ser humano no centro do processo. Com empatia, colaboração e experimentação, ele capacita as empresas a criar soluções que realmente atendam às necessidades de seus clientes e impulsionem o sucesso a longo prazo.

Fonte: Troposlab

 

Conclusão

Em resumo, o Design Thinking oferece uma abordagem centrada no ser humano e altamente colaborativa que pode melhorar significativamente a qualidade e a eficiência dos projetos de construção civil, resultando em espaços mais funcionais, sustentáveis e atraentes. Ao envolver os clientes, usuários e demais partes interessadas desde o início, é possível criar soluções que realmente atendam às suas necessidades e desejos.

BIM E SUSTENTABILIDADE: PRÁTICAS ECOLÓGICAS NA CONSTRUÇÃO

BIM E SUSTENTABILIDADE: PRÁTICAS ECOLÓGICAS NA CONSTRUÇÃO

A indústria da construção civil tem um impacto significativo no meio ambiente. Ela consome uma quantidade substancial de recursos naturais, gera uma quantidade significativa de resíduos e emite uma grande quantidade de poluentes. No entanto, à medida que a conscientização ambiental aumenta e a necessidade de construir de forma sustentável se torna mais proeminente, a tecnologia BIM está emergindo como uma ferramenta fundamental para ajudar a mitigar esses impactos negativos.

Fonte: O CTE

A Importância da sustentabilidade na construção civil

A importância da sustentabilidade na construção civil é fundamental, pois essa indústria desempenha um papel significativo nos impactos ambientais globais, incluindo o consumo de recursos naturais, a geração de resíduos e as emissões de gases de efeito estufa. Adotar práticas ecológicas não apenas reduz o impacto negativo da construção no meio ambiente, mas também resulta em benefícios econômicos, sociais e de qualidade de vida. É promovida a eficiência energética, conservação de recursos, melhoria da qualidade do ar interior, redução de custos operacionais a longo prazo, valorização de propriedades e, acima de tudo, contribui para um futuro mais saudável e equilibrado para as gerações presentes e futuras.

A área consome muitos bens naturais e gera quantidades exorbitantes de resíduos. Segundo o Conselho Brasileiro de Construção Sustentável (CBCS), quase 75% dos recursos do meio ambiente são extraídos pelas indústrias da construção. Além disso, os canteiros geram cerca de 80 toneladas de detritos anualmente.

Fonte: Secretaria de Meio Ambiente de São Paulo

Vantagens da sustentabilidade na construção civil

● Economia a longo prazo

● Inovação e competitividade

● Reputação e responsabilidade social

● Conformidade com regulamentações

● Valorização imobiliária

● Qualidade de vida

● Economia de energia e custos operacionais

● Economia de recursos

● Redução do impacto ambiental

Incentivos fiscais para obras sustentáveis

Os incentivos fiscais para obras sustentáveis são medidas governamentais que visam promover práticas construtivas mais amigáveis ao meio ambiente e eficientes em termos de recursos. Esses incentivos podem assumir várias formas e são implementados em níveis federal, estadual e municipal em muitos países ao redor do mundo.

As práticas sustentáveis na construção civil ajudam a reduzir a carga tributária das obras. Um bom exemplo é o IPTU Verde, que concede desconto às construções ecoeficientes, que pode reduzir de 5% a 20% a conta de IPTU. Além de serem oferecidas deduções fiscais, financiamentos subsidiados, certificações e reconhecimentos e muitas outras vantagens.

O Papel do BIM na Sustentabilidade

 

1. Projeto integrado

O BIM facilita o projeto integrado, no qual todos os stakeholders, como arquitetos, engenheiros, construtores e clientes, colaboram desde o início do projeto. Isso possibilita a consideração de aspectos sustentáveis desde a fase inicial, o que é fundamental para a construção sustentável.

Fonte: SPBIM

2. Análises ambientais

Com a metodologia, é possível realizar análises ambientais detalhadas. Por exemplo, é possível simular o desempenho energético de um edifício e identificar maneiras de melhorar sua eficiência. Isso não apenas reduz os custos operacionais a longo prazo, mas também diminui a pegada de carbono do edifício.

3. Redução de resíduos

A otimização do uso de materiais durante a fase de projeto já é possível com o Building Information Modeling. Isso significa que menos material é desperdiçado durante a construção, o que não apenas economiza dinheiro, mas também reduz a extração de recursos naturais e a produção de resíduos.

Fonte: FeComércioSP

4. Manutenção eficiente

A sustentabilidade não se limita à construção; a manutenção a longo prazo também é crucial. Com o BIM, é possível criar modelos de informações que facilitam a manutenção preditiva e preventiva. Isso ajuda a prolongar a vida útil de um edifício e reduzir o desperdício associado à demolição prematura.

Fonte: SPBIM

 

PRÁTICAS ECOLÓGICAS NA CONSTRUÇÃO

1. Pisos com materiais sustentáveis

Além de ecologicamente correto, o uso de pisos fabricados a partir de materiais reciclados, a exemplo do vinílico, confere uma maior qualidade ao revestimento, por ser um material mais durável e fácil de higienizar.

Fonte: Drenaltec

2. Placas fotovoltaicas

Outra ação que vem sendo adotada por muitas construções é a instalação de painéis solares, que captam a luz do sol para produzir energia elétrica. Uma novidade no mercado é a criação de telhas solares. Com os constantes aumentos da conta de luz, pensar em formas alternativas de energia é fundamental para os dias atuais.

Fonte: Portal Solar

3. Eficiência energética

A grave crise energética mundial reforça a necessidade de pensar soluções sustentáveis de economizar a energia elétrica e, ao mesmo tempo, de usar fontes de energia renováveis, a exemplo da energia solar, eólica e pirólise, gerada pela decomposição de materiais orgânicos.

Outra ação que pode ajudar a reduzir a conta de luz é o uso da luz natural. Isso mesmo. Ao criar um projeto, o profissional deve pensar em manter a iluminação natural o máximo de tempo no ambiente, avaliando a incidência solar no local, evitando o uso desnecessário das luzes artificiais. Por falar nisso, para melhorar ainda mais a eficiência energética de um ambiente, é recomendado o uso de lâmpadas de LED, 80% mais econômicas que as incandescentes e 30% mais que as fluorescentes.

4. Coletor solar para o aquecimento de água

Outra forma de economizar na conta de luz é a instalação de aquecedor solar de água, que capta a luz do sol para manter o chuveiro aquecido.

Fonte: WordPress

5. Descarga com duplo acionamento

Pensar no uso consciente dos recursos naturais é fundamental nas construções sustentáveis. Uma dessas ações é o uso de descarga com acionamento duplo. Para que haja um melhor aproveitamento da água, em vez de utilizar o volume máximo do reservatório, o acionamento duplo utiliza a quantidade necessária, uma economia de 35% se comparado com válvulas comuns.

Fonte: Globo

6. Green buildings

O conceito de green buildings é uma solução sustentável que já se tornou uma tendência do mercado imobiliário, pois todo o seu projeto é pensado para integrar a natureza aos espaços urbanos, usando produtos de baixo impacto ambiental. Tijolos ecológicos, por exemplo, são bem-vindos nesse tipo de construção.

Fonte: Editora Abril

7. Gestão de resíduos

Pensar no descarte dos resíduos produzidos em uma obra merece um cuidado especial. Isso porque uma má gestão dos entulhos pode causar enchentes, por exemplo.

O responsável pela obra deve conscientizar a equipe sobre práticas sustentáveis, direcionando sobre a forma correta de descartar os materiais usados e indicar aqueles que podem ser reutilizados. Os produtos que não podem ser aproveitados devem ser direcionados ao aterro sanitário.

8. Ventilação adequada

Algo que se deve levar em consideração em uma obra sustentável são os cuidados com a ventilação do ambiente, pois ela mantém o conforto climático, deixando o ambiente salubre, evitando manutenção constante e reduzindo o consumo de energia.

9. Telhado verde

A utilização de telhado ecológico em uma construção serve tanto para isolamento térmico quanto acústico. Essa é uma eficiente solução arquitetônica que integra a natureza aos centros urbanos, ajudando a amenizar a temperatura, reduzindo a poluição e auxiliando no reaproveitamento da água da chuva.

Fonte: Zoppo Verde Urbano

10. Escolha de materiais

Uma das práticas sustentáveis da construção civil que podemos citar é a compra de materiais menos tóxicos e com baixo impacto ambiental que, em alguns casos, podem ter o custo mais elevado, mas que, geralmente, entregam uma maior qualidade e precisam de menos manutenção.

Em uma obra sustentável, é boa prática substituir tintas à base de solvente por aquelas à base d’água. Também recomenda-se o uso de produtos biodegradáveis, como o bambu, devido à rápida regeneração da planta, e a cortiça, extraída do tronco da árvore, sem prejudicar a natureza e usada para isolamento acústico.

11. Isolamento térmico

O isolamento térmico significa, além do conforto térmico no ambiente, economia na conta de luz. Isso porque, quando um ambiente possui isolamento térmico, ele reduz o uso de alguns dos equipamentos que mais consomem energia, que são o aquecedor e o ar-condicionado. Desse modo, se o ambiente está isolado termicamente, tais equipamentos podem ser desligados, sem que o ambiente sofra forte variação térmica.

Fonte: Techinfus

Estudos de caso sobre BIM e sustentabilidade

Vários projetos de construção em todo o mundo estão demonstrando como o BIM pode ser usado de maneira eficaz para promover a sustentabilidade. Por exemplo, o Edifício Pearl River Tower, em Guangzhou, China, foi projetado com o uso extensivo do BIM e alcançou uma eficiência energética notável, com economias substanciais de energia e emissões de carbono reduzidas.

Fonte: Archello

Outro exemplo é o projeto Bullitt Center em Seattle, EUA, que é amplamente considerado como um dos edifícios mais sustentáveis do mundo. A metodologia foi fundamental para o design e a construção desse edifício, que alcançou a certificação Living Building Challenge, um dos mais rigorosos padrões de construção sustentável.

Fonte: Pensamento verde

Desafios e Barreiras

Embora o BIM ofereça muitos benefícios para a sustentabilidade na construção, também enfrenta desafios. A implementação bem-sucedida do BIM requer investimento em tecnologia e treinamento, o que pode ser uma barreira para empresas menores. Além disso, a colaboração eficaz entre todas as partes interessadas pode ser complicada.

 

Conclusão

O BIM está se tornando uma ferramenta indispensável para alcançar a sustentabilidade na indústria da construção. Ele permite o projeto integrado, análises ambientais detalhadas, redução de resíduos e manutenção eficiente, contribuindo assim para a construção de edifícios e infraestruturas mais ecológicas.

Embora haja desafios a serem superados, os benefícios do BIM em termos de sustentabilidade são claros e tangíveis. À medida que a tecnologia continua a evoluir e mais empresas adotam práticas ecológicas na construção, podemos esperar que o BIM desempenhe um papel cada vez mais importante na criação de um ambiente construído mais sustentável e amigável ao meio ambiente.

Caso tenha gostado do artigo, sugerimos as seguintes leituras: O QUE É BIM 6D?, O QUE É BIM?